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Carmeli’s Gravitational Field Equations
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Carmeli has proposed spinorial field equations in curved space-time to describe grav-
itation. In this paper we give the relationship between these equations and the stan-
dard Einstein gravitational field equations. In particular we show that all solutions to
Einstein’s equations are solutions to Carmeli’s equations, but not vice versa.
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1. INTRODUCTION

In his book (Carmeli, 1982), Carmeli has proposed the following spinorial
field equations in curved space-time to describe gravitation:

∇νFAB
µν = JAB

µ, (1a)

∇ν∗FAB
µν = 0, (1b)

whereFAB
µν is the curvature spinor, and∗FAB

αβ is its dual, both to be defined in
the sequel. The “current density”JAB

µ was not specified by him. The elegance of
these equations can be readily seen as they are similar to Maxwell’s equations:

∇νFµν = Jµ, (2a)

∇ν∗Fµν = 0, (2b)

whereFµν is the electromagnetic field. It will be noticed that Eqs. (1) are also
esthetically identical to Yang–Mills gauge field equations. The gauge aspects of
Eqs. (1) will be shown elsewhere.

It is the purpose of this paper to discuss in detail some aspects of these
equations, which will be referred to henceforth as Carmeli’s equations. It will be
shown that the Einstein field equations and these equations are closely related. In
fact, for a proper choice ofJAB

α any solution to Einstein’s equations will satisfy
(1a) and (2b) identically.
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Our discussion will be done using spinor calculus, which will be introduced
in brevity. For more details the reader is referred to Carmeli (1977, 1982).

2. PRELIMINARIES

This section is a brief introduction to the formalism that will be used in this
paper and will fix our notation henceforth.

2.1. Spinor Representation ofSL(2,C)

Let Gmn be the set of all polynomialsp(z, z̄) of degree no larger thanm in z
andn in its complex conjugatēz. Thus under the law of polynomial addition and
multiplication by a scalar,Gmn constitutes a finite (m+ 1)× (n+ 1)-dimensional
vector space.

Let g ∈ SL(2,C) be the group of all 2× 2 complex matrices with unit deter-
minant, and define the linear operatorTg : Gmn→ Gmn such that

Tg ◦ p(z, z̄) ≡ (g01z+ g11)
m(ḡ01z̄+ ḡ11)

n p

(
g00z+ g10

g01z+ g11
,

ḡ00z̄+ ḡ10

ḡ01z̄+ ḡ11

)
. (2.1)

In the above equationglk , where l , k ∈ {1, 2}, are elements of the matrixg ∈
SL(2,C):

g =
(

g00 g01

g10 g11

)
. (2.2)

It can be verified by substitution thatTgTh = Tgh for all g, h in SL(2,C). The
correspondenceg→ Tg is thus a finite–dimensional representation ofSL(2,C).

Now let G̃mn be the set of all complex numbersψA1···AmB′1···B′n which are
symmetric in the indicesA1, . . . , Am and inB′1, . . . , B′n where all the indices take
the values 0 and 1. Under the normal law of addition and multiplication by a scalar
it is thus clear that̃Gmn constitutes another (m+ 1)× (n+ 1)-dimensional vector
space.

Now for eachψA1···AmB′1···B′n in G̃mn we can definep(z, z̄) ∈ Gmn such that

p(z, z̄) = ψA1···AmB′1···B′n zA1+···+Amz̄B′1+···+B′n , (2.3)

where the summation convention is used. Conversely, ifp(z, z̄) ∈ Gmn, then there
exist coefficientsalk such that

p(z, z̄) = alkzl z̄k. (2.4)

To each such coefficient we can define uniquely an elementψA1···AmB′1···B′n of G̃mn by

ψA1···AmB′1···B′n =
(

m
A1+ · · · + Am

)(
n

B′1+ · · · + B′n

)
aA1+···+AmB′1+···+B′n (2.5)
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where (
n
k

)
= n!

k!(n− k)!
.

We thus have a one-to-one correspondence betweenG̃mn and Gmn. There
must therefore be a one-to-one correspondence between linear operators onG̃mn

and linear operators onGmn. Let T̃ denote the operator oñGmn, which corresponds
to the operatorT on Gmn

Tg ◦ p(z, z̄) = Tg ◦
(
ψA1···AmB′1···B′n zA1+···+Amz̄B′1+···+B′n

)
= (g01z+ g11)

m(ḡ01z̄+ ḡ11)
nψA1···AmB′1···B′n

×
(

g00z+ g10

g01z+ g11

)A1+···+Am
(

ḡ00z̄+ ḡ10

ḡ01z̄+ ḡ11

)B′1+···+B′n

= (T̃g ◦ ψA1···AmB′1···B′n
)
zA1+···+Amz̄B′1+···+B′n . (2.6)

A long but straightforward calculation yields

ψ ′A1···AmB′1···B′n ≡ T̃g ◦ ψA1···AmB′1···B′n

= gA1
C1 · · · gAm

CmḡB′1
D′1 · · · ḡB′n

D′nψC1···CmD′1···D′n (2.7)

where

g0
0 ≡ g11, g0

1 ≡ g10, g1
0 ≡ g01, g1

1 ≡ g00 (2.8)

An entity thus transformed underSL(2,C) is called atwo-component spinor, and
the corresponding representation is calledspinor representation.

2.2. Spinors in Curved Space-Time

Consider a Riemannian manifold with connections. At each point define in
some consistent manner a tangent two-dimensional complex space. At each such
point we may define two-component spinors, which will be in general functions of
the coordinates at each patch. Now in flat space-time every tensor is readily related
to a two-component spinor through the Pauli matrices and the unit 2× 2 matrix.
Since at every point of the manifold space is locally flat, we conclude that this
procedure can be done in curved space-time with some generalized Pauli and unit
matrices such that when transforming the metric at a point to the Minkowskian
metric, the transformed Pauli and unit matrices will correspond to the usual ones.
This procedure is described now.

Let σµAB′ be the generalized Pauli and unit matrices, where Greek letters cor-
respond to space-time indexes-{0,1,2,3} and Latin capital letters denote spinorial
indexes-{0,1}. These mixed quantities will behave like vectors under space-time
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change of coordinates and like two component spinors underSL(2,C) group trans-
lations. They clearly preserve hermiticity as well,

σ
µ

AB′ = σµB′A = σ̄ µB A′ . (2.9)

TheσµAB′ are usually used for convenience and need not be calculated when
spinors are used in general relativity. It is, however, important for our discussion
to realize that once the metric tensor is known, theσ

µ

AB′ can be found in some
consistent way. This can be done for instance by the following procedure: (1) take
a patch of the manifold with some coordinates, choose a point in the patch, and
coordinate system in which the metric unifies with the Minkowskian metric at that
point. At that point in the corresponding new coordinates theσ

µ

AB′ can be chosen to
be simply the normal flat space-time Pauli and unit matrices. Return to the original
coordinates when theσµAB′ transform as a vector. (2) Repeat (1) at all points in the
patch. (3) Repeat (1) and (2) to all patches covering the manifold.

The relationship between the metric tensor and theσ
µ

AB′ matrices, as in flat
space-time, is given by

gµνσ
µ

AB′σ
ν
C D′ = εACεB′D′ (2.10)

and

εACεB′D′σ
µ

AB′σ
ν
C D′ = gµν , (2.11)

whereε are totally skew-symmetric spinors withε01 ≡ 1, called the Levi–Civita
metric spinors. These spinors can be used in lowering and raising indexes as
follows:

ξ A = εABξB, ξ A′ = εA′B′ξB′ ,

ξA = εB Aξ
B, ξA′ = εB′A′ξ

B′ .
(2.12)

Every tensor can be related to a spinor by means of “contracting” the tensor
indices with theσµAB′ ’s space-time indices. For example, the spinor equivalent to
the tensorTαβ is given by

TAB′C D′ ≡ σαAB′σ
β

C D′Tαβ. (2.13)

The transformation (2.13) is clearly reversible because of (2.10) and (2.11).
To relate spinors between two infinitesimally neighboring points and thus to

define differentiation consistently, we need a law of parallel transplantation. This
is done analogously to vector transplantation through spinor affine connections. If
a spinorξA is given at pointP, we define the transplantation ofξA into P + d P
(Adler et al., 1965).

ξA(P + d P) = ξA + 0B
AαξB. (2.14)
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Covariant differentiation is thus defined by

∇αξA = ∂αξA − 0B
AαξB. (2.15)

The connections0 are defined such that (1) The transplanted spinor transforms like
a two-component spinor. (2) The covariant derivative transforms like a vector under
change of coordinates. (3)∇αεAB = ∇αεA′B′ = 0. If in addition, (4)∇ασ νAB′ = 0,
then the spinor transplantation is called parallel transport or parallel displacement.
The corresponding connections can thus be determined by theσ

µ

AB′ and are called
Riemannian spinor affine connection.

After this brief introduction to spinor algebra, and before discussing Carmeli’s
equations, some special spinors and identities are introduced.

2.3. The Curvature Spinor and Some Convenient Identities

Let us hereafter confine ourselves to only Riemannian spinor connections
until otherwise specified. In analogy to Riemannian curvature we define spino-
rial curvature by the nonintegrability condition of (2.14) or equivalently by the
commutator

(∇α∇β −∇β∇α)ξA = F B
AαβξB. (2.16)

Now

∇β∇αξA = ∂β∇αξA − 0γαβ∇γ ξA − 0B
Aβ∇αξB

= ∂β∂αξA − ∂β0B
AαξB − 0γαβ∇γ ξA − 0B

Aβ∂αξB + 0B
Aβ0

C
BαξC

= (∂β∂αξA − 0γαβ∇γ ξA − 0βAβ∂αξB − 0B
Aα∂βξB

)
+ (0B

Aβ0
C
BαξC −

(
∂β0

β

Aα

)
ξB
)

(2.17)

The expression in the first brackets of the above equation is clearly symmetric and
will therefore not contribute to (2.16). We thus find that

(∇α∇β −∇β∇α)ξA =
(
0B

Aα,β − 0B
Aβ,α + 0C

Aα0
B
Cβ − 0C

Aβ0
B
Cα

)
ξB = F B

AαβξB

(2.18)

or

F B
Aαβ = 0B

Aα,β − 0B
Aβ,α + 0C

Aα0
B
Cβ − 0C

Aβ0
B
Cα. (2.19)

F B
Aαβ is called thecurvature spinor.

The relationship between the Riemannian curvature tensor and the curv-
ature spinor can be found as follows: recall that by definition,Rρναβξρ =
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(∇β∇α −∇α∇β)ξν . Multiplying both sides of this equation byσνAB′ we find,

σ νAB′ (∇α∇β −∇β∇α)ξν = σ νAB′R
ρ
νβαξρ = σ νAB′g

ρµRµνβαξρ

= σ νAB′σ
µ

C D′σ
ρC D′Rµνβαξρ = RC D′AB′βαξ

C D′ . (2.20)

Since we are strictly dealing with Riemannian spinor connections, condition (4)
of Section 2b follows identically. The left-hand side of (2.20) is thus just

(∇α∇β −∇β∇α)ξAB′ = F M
AαβξM B′ + F̄ M ′

B′αβξAM′

= (εD′B′FC Aβα + εC AF̄D′B′βα)ξC D′ (2.21)

Comparing (2.20) and (2.21), we find

RAB′C D′αβ = εB′D′FACαβ + εACF̄B′D′αβ. (2.22)

It can, moreover, be shown that the curvature spinor has the following sym-
metry properties:

FABαβ = FB Aαβ ,
(2.23)

FABαβ = −FABβα.

Multiplying (2.22) by εB′D′ and applying the above symmetry properties, one
obtains

2FACαβ = RACαβ ≡ RAB′C
B′
αβ. (2.24)

By the correspondence between the tensorial curvature and the spinorial curvature,
we find that the spinor curvature satisfies the Bianchi identities

∇αRµνβγ +∇βRµνγα +∇γ Rµναβ = 0, (2.25)

m
0 = σµAE′σ

νE′

B (∇αRµνβγ +∇βRµνγα +∇γ Rµναβ)

= ∇αRABβγ +∇βRABγα +∇γ RABαβ , (2.26)

m
∇αFABβγ +∇βFABγα +∇γ FABαβ = 0. (2.27)

The dual of the curvature spinor is defined by

∗FAB
µν ≡ 1

2
(−g)−

1
2 εαβµνFABαβ. (2.28)

We can thus write the Bianchi identities as∇ν∗FAB
µν = 0, which is just Eq. (1b)

of Carmeli’s equations.
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3. CORRESPONDENCE BETWEEN CARMELI’S
AND EINSTEIN’S EQUATIONS

We are now in a position to discuss Carmeli’s equations in more detail. We first
recall, by Eq. (2.11), that the metric tensor can be written in terms of theσνAB′ and the
σ AB′
ν . This is true, therefore, for the Christoffel symbols, the spinor connections and

thus, for the curvature spinor and its covariant derivatives. Carmeli’s equations can
thus be considered as a set of partial differential equations of the third order in the
variablesσνAB′ and theσ AB′

ν and their partial derivatives. Assuming, furthermore,
that they are soluble, then we can build the metric and so the entire Riemannian
space. We will now find out what the Riemannian space is so constructed. This
will enable us to find out the correspondence to Einstein’s equations.

Proposition 1. When restricted to Riemannian connections, every solution to
Einstein’s equations

Rµ
ν − 1

2
δµ
νR= kTµ

ν , (3.1)

satisfies Carmeli’s equations identically for an appropriate choice of JAB
α in

Eq. (1a).

Before proving this statement, it will be convenient to prove the following
lemma.

Lemma 1.1. Let Hαβγ be a tensor defined by

Hαβ
γ ≡ σ AB′

α σC D′
β

(
εB′D′ JAC

γ + εAC J̄B′D′
γ
)

(3.2)

Then

∇δFAB
γ δ = JAB

γ ⇔ ∇δRαβγ δ = Hαβ
γ . (3.3)

Proof: We first notice that

∇δFAB
γ δ = JAB

γ ⇔ ∇δ F̄ A′B′
γ δ = J̄ A′B′

γ , (3.4)

Hence by (2.22)

∇νRAB′C D′
µν = εB′D′∇νFAC

µν + εAC∇ν F̄B′D′
µν

= εB′D′ JAC
µ + εAC J̄B′D′

µ. (3.5)

Conversely, if (3.5) holds, then multiplying its both sides byεB′D′ gives (la).
Consequently,

∇νFAB
µν = JAB

µ ⇔ ∇νRAC′B D′
µν = εC′D′ JAB

µ + εAB J̄C′D′
µ. (3.6)
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But since we are dealing with Riemannian connections, condition (4) of Section 2b
is satisfied. Therefore

∇νRαβ
µν = Hαβ

µ ⇔ ∇νRAC′B D′
µν = εC′D′ JAB

µ + εAB J̄C′D′
µ (3.7)

sinceRαβµν = σ AB′
α σC D′

β RAB′C D′
µν and the transformation is reversible. Thus (3.6)

and (3.7) give (3.3). This proves our lemma.¤

Proof of Proposition 1: The major significance of the restriction to Riemannian
connections is that Bianchi identities (2.25) and (1b) are satisfied. Multiplying
(2.25) bygαµ gives

∇µRβγ ν
µ = ∇γ Rβν −∇βRγ ν. (3.8)

We can write the Einstein equations (3.1) as

Rαβ = k(Tαβ − gαβT), (3.9)

wereT ≡ gµνTµν . But if Einstein’s equations (3.9) are satisfied, then by (3.8) we
have

∇µRβγ ν
µ = k(∇γWβν −∇βWγ ν) (3.10)

where

Wαβ ≡ Tαβ − gαβT. (3.11)

Now let

∇µRαβ
γµ = Hαβ

γ (3.12)

whereHαβ
γ is given by Eq. (3.2). Then (3.10) gives

Hαβ
γ ≡ σ AB′

α σC D′
β

(
εB′D′ JAC

γ + εAC JB′D′
γ
) = k

(∇βWα
γ −∇αWβ

γ
)

(3.13)

m

εB′D′ JAC
γ + εAC JB′D′

γ = kσαAB′σ
β

C D′
(∇βWα

γ −∇αWβ
γ
)

= k
(∇C D′WAB′

γ −∇AB′WC D′
γ
)

(3.14)

m

JAC
γ = 1

2
kεB′D′(∇C D′WAB′

γ −∇AB′WC D′
γ
)

= 1

2
k
(∇C

B′WAB′
γ +∇A

B′WC B′
γ
)
. (3.15)

Let JAB
γ be given as in (3.15). IfRαβγ δ is the curvature tensor built from a solution

to Einstein’s equations, then, as shown, (3.10) is satisfied. But if (3.15) is satisfied,
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then (3.13) is satisfied, and if (3.10) and (3.13) are satisfied, then (3.12) is satisfied,
so that by Lemma 1.1, Eq. (1a) is satisfied, proving our proposition.¤

We conclude from Proposition 1 that Carmeli’s equations are more general
than Einstein’s equations. It is now desired to check the extent of this generality
when JAB

γ is given by (3.15). To this end, letRαβγ δ correspond to a solution to
Einstein’s equations and letR̃αβγ δ correspond to a solution to Carmeli’s equations
with JAB

γ given by (3.15). Then by Proposition 1,Rαβγ δ correspond to a solution
to Carmeli’s equations, so that by Lemma 1.1 and Eq. (3.2), bothRαβγ δ andR̃αβγ δ
satisfy Eq. (3.12). Thus

∇δRαβγ δ = ∇δ R̃αβγ δ = Hαβ
γ . (3.16)

Let

Aαβγ δ ≡ R̃αβγ δ − Rαβγ δ. (3.17)

Then by Eq. (3.16)Aαβγ δ satisfies

∇δAαβγ
δ = 0. (3.18)

It is also clear thatAαβγ δ has the same symmetry properties asR̃αβγ δ andRαβγ δ.
Moreover, since bothR̃αβγ δ and Rαβγ δ satisfy Bianchi identities then so does
Aαβγ δ. Thus by Lemma 1.1 and Eq. (3.18)Aαβγ δ corresponds to a solution to the
homogeneous Carmeli’s equations, namely Eq. (1a), (1b) withJAB

α = 0.
Note that sinceAαβγ δ has the same symmetry properties as the curvature

tensor, and since it satisfies Bianchi’s identities, then (3.18) can be written through
(3.8) as

∇µAβγ ν
µ = ∇γ Aβν −∇β Aγ ν = 0, (3.19)

where

Aαβ = Aαµβ
µ = gµνAαµβν. (3.20)

The contraction of (3.19) throughβ, ν gives

2∇µAγ
µ = ∂γ A (3.21)

and

∇µAγ
µ = ∂γ A. (3.22)

We thus conclude

∂A = 0

⇓
A = const. (3.23)



P1: GFU

International Journal of Theoretical Physics [ijtp] PP518-ijtp-375277 June 12, 2002 15:14 Style file version May 30th, 2002

1200 Vager

Now contracting (3.17), we get

R̃αβ = Rαβ + Aαβ. (3.24)

So we see that a solution to the Carmeli equations with the corresponding “current
density” is equivalent to a solution to a generalized Einstein equations of the sort

Rαβ = k(Tαβ − gαβT)+ Aαβ , (3.25)

whereAαβ is the Ricci tensor that corresponds to a solution to the homogeneous
Carmeli equations. Recall that the Einstein field equations in empty space with a
cosmological constant can be written asRαβ = gαβ3, and since, by definition of
Riemannian space, the metric is a constant field with respect to covariant differen-
tiation, we arrive at the conclusion that such a Ricci tensor must satisfy Eq. (3.19).
Furthermore, by Lemma 1.1 we conclude thatRαβ also corresponds to a solution
to the homogeneous Carmeli equations. There exists, therefore, a solution to the
homogeneous Carmeli equations such that the corresponding Ricci tensorAαβ
satisfiesAαβ = gαβ3. Substituting this in Eq. (3.25), we see that solutions to the
Einstein equations with a cosmological constant are also included in solutions to
Carmeli’s equations.

4. CONCLUDING REMARKS

The Carmeli equations, as we have seen, are more general than Einstein’s
equations. They, moreover, contain all solutions to Einstein’s equations even with
a cosmological constant. It is worthwhile therefore exploring them furthermore.
In particular, as shown in the last section, their homogeneous solutions play an
important role.

It is interesting to note, and may be shown in a sequel paper, that the
Riemannian spinor connections are readily in the form ofSL(2,C) gauge poten-
tials, with the curvature spinor as the gauge field. The gauge field equations thus
formed will clearly be the Carmeli equations. If, moreover, the connections are
not specified, then the Carmeli equations will be a generalSL(2,C) gauge field
equations.
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