International Journal of Theoretical Physics, Vol. 41, No. 6, June 2@02(02)

Carmeli’s Gravitational Field Equations
Dan Vagert
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Carmeli has proposed spinorial field equations in curved space-time to describe grav-
itation. In this paper we give the relationship between these equations and the stan-
dard Einstein gravitational field equations. In particular we show that all solutions to
Einstein’s equations are solutions to Carmeli’s equations, but not vice versa.
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1. INTRODUCTION

In his book (Carmeli, 1982), Carmeli has proposed the following spinorial
field equations in curved space-time to describe gravitation:

V,Fag"’ = Jag", (1a)
V,*Fag"’ =0, (1b)

whereFag"" is the curvature spinor, aridF,g*? is its dual, both to be defined in
the sequel. The “current densityag* was not specified by him. The elegance of
these equations can be readily seen as they are similar to Maxwell’s equations:

VW = gk, (2a)
V,'F* =0, (2b)

where F#¥ is the electromagnetic field. It will be noticed that Egs. (1) are also
esthetically identical to Yang—Mills gauge field equations. The gauge aspects of
Egs. (1) will be shown elsewhere.

It is the purpose of this paper to discuss in detail some aspects of these
equations, which will be referred to henceforth as Carmeli’'s equations. It will be
shown that the Einstein field equations and these equations are closely related. In
fact, for a proper choice alag®* any solution to Einstein’s equations will satisfy
(1a) and (2b) identically.
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Our discussion will be done using spinor calculus, which will be introduced
in brevity. For more details the reader is referred to Carmeli (1977, 1982).

2. PRELIMINARIES

This section is a brief introduction to the formalism that will be used in this
paper and will fix our notation henceforth.

2.1. Spinor Representation ofSL(2,C)

Let Gmp, be the set of all polynomialp(z, z) of degree no larger tham in z
andn in its complex conjugate. Thus under the law of polynomial addition and
multiplication by a scalaiGm, constitutes a finiterqi + 1) x (n + 1)-dimensional
vector space.

Letg € SL(2,C) be the group of all Z 2 complex matrices with unit deter-
minant, and define the linear operai@r: Gmn — Gmn such that

QooZ + J10 GooZ + 610) 2.1)
O01Z+ Q11 GoaZ+ Qi)
In the above equationy, wherel, k € {1, 2}, are elements of the matrig €

SL(2,C):
Qoo Jo1
= . 2.2
g (910 911) (2:2)

It can be verified by substitution th&§ T, = Ty for all g, hin SL(2,C). The
correspondencg — Ty is thus a finite—dimensional representatiorsof2,C).

Now let G, be the set of all complex numbetsa, ..o, g;..8, Which are
symmetric in the indicegy, ..., AnandinBy, ..., B/, where all the indices take
the values 0 and 1. Under the normal law of addition and multiplication by a scalar
it is thus clear thaG,, constitutes anothen(+ 1) x (n + 1)-dimensional vector
space.

Now for eachya,...a,;-.5; IN Gmn We can defingp(z, Z) € G such that

Tg o P(Z, 2) = (901Z + 911)™(Go1Z + G11)" P (

p(21 Z) = wAl---A,nB]’..,_Br/]ZA1+'--+AmZB/1+-"+B,£,, (23)

where the summation convention is used. Conversep(zfz) ¢ G, then there
exist coefficientsy such that

p(z, 2) = axz Z“. (2.4)
To each such coefficient we can define uniguely an eleggnta, s;...g, Of Gmn by

m n
VAL -AnB-B, = (Al 4t Am) <Bi+ . Br,1> Ap -+ AnB++B;  (2.5)
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We thus have a one-to-one correspondence betgnand G, There
must therefore be a one-to- -one correspondence between linear operaﬁbﬁa on
and linear operators d&mn. LetT denote the operator @B, Which corresponds
to the operatol on G,

Tgop(z,2) = Tyo (lﬂAl.uAmBi.“BézA1+"'+Aszi+~~+Bg)
= (go1z + gll)m(g_012+ 511)“wA1...AmBi...Bé

x <9002 + 910> Aut A <§ooz+ glo) Bt By
Qo1Z + O11 001Z + 011

= (Tg 0 Ya sy )2 Azt 8, (2.6)

where

A long but straightforward calculation yields
I///Ar--Ame--Bﬁ = Tg © wAr"/-\mBi---B,Q

c Cng., DL .. .= D,
=ga - -0a, ™08, ' 08, "VC,-CnD;--Dy (2.7)
where

0°=011, G =00 9°=0o, ' = 0o (2.8)

An entity thus transformed und&L(2,C) is called @awo-component spinpand
the corresponding representation is calpthor representatian

2.2. Spinors in Curved Space-Time

Consider a Riemannian manifold with connections. At each point define in
some consistent manner a tangent two-dimensional complex space. At each such
point we may define two-component spinors, which will be in general functions of
the coordinates at each patch. Now in flat space-time every tensor is readily related
to a two-component spinor through the Pauli matrices and the uni2 2natrix.

Since at every point of the manifold space is locally flat, we conclude that this
procedure can be done in curved space-time with some generalized Pauli and unit
matrices such that when transforming the metric at a point to the Minkowskian
metric, the transformed Pauli and unit matrices will correspond to the usual ones.
This procedure is described now.

Letong be the generalized Pauli and unit matrices, where Greek letters cor-
respond to space-time indexf&4,2,3 and Latin capital letters denote spinorial
indexes{0,1}. These mixed quantities will behave like vectors under space-time
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change of coordinates and like two component spinors UBderC) group trans-
lations. They clearly preserve hermiticity as well,

Ong = Ofp=Opu- (2.9)

Theo,p are usually used for convenience and need not be calculated when
spinors are used in general relativity. It is, however, important for our discussion
to realize that once the metric tensor is known, dtfg, can be found in some
consistent way. This can be done for instance by the following procedure: (1) take
a patch of the manifold with some coordinates, choose a point in the patch, and
coordinate system in which the metric unifies with the Minkowskian metric at that
point. At that point in the corresponding new coordinatestfje can be chosen to
be simply the normal flat space-time Pauli and unit matrices. Return to the original
coordinates when the, g, transform as a vector. (2) Repeat (1) at all points in the
patch. (3) Repeat (1) and (2) to all patches covering the manifold.

The relationship between the metric tensor andatfje matrices, as in flat
space-time, is given by

gMVO—KB’O'(]éD’ = EACEBR'D’ (210)
and
e"CeBP ol aln = 0", (2.11)

wheree are totally skew-symmetric spinors witg; = 1, called the Levi—Civita
metric spinors. These spinors can be used in lowering and raising indexes as
follows:

EA=¢ehBgg, &N =eNBgp,

, 2.12
En = egat®, En =epnéb. (2.12)

Every tensor can be related to a spinor by means of “contracting” the tensor
JZ}

indices with thes, 5’s space-time indices. For example, the spinor equivalent to
the tensof,, is given by

Tasco = 085080 Tup. (2.13)

The transformation (2.13) is clearly reversible because of (2.10) and (2.11).

To relate spinors between two infinitesimally neighboring points and thus to
define differentiation consistently, we need a law of parallel transplantation. This
is done analogously to vector transplantation through spinor affine connections. If
a spinoré, is given at pointP, we define the transplantation & into P + dP
(Adler et al,, 1965).

EaA(P +dP) =&p+ 'y, £5. (2.14)
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Covariant differentiation is thus defined by
Vafa = dufa — T . (2.15)

The connectionF are defined such that (1) The transplanted spinor transforms like
atwo-component spinor. (2) The covariant derivative transforms like a vector under
change of coordinates. (3L eag = Voear = 0. If in addition, (4)V,o,g =0,
then the spinor transplantation is called parallel transport or parallel displacement.
The corresponding connections can thus be determined lyjthend are called
Riemannian spinor affine connection.

After this briefintroduction to spinor algebra, and before discussing Carmeli’'s
equations, some special spinors and identities are introduced.

2.3. The Curvature Spinor and Some Convenient Identities

Let us hereafter confine ourselves to only Riemannian spinor connections
until otherwise specified. In analogy to Riemannian curvature we define spino-
rial curvature by the nonintegrability condition of (2.14) or equivalently by the
commutator

(Va Ve = Vs Va)bn = F° aupte. (2.16)
Now
Vi Vaba = 85 Vaba — TV, 6a — T g Vaés
= 0p0ubn — OpT pyén — TV, 6n — Tagdakn + T g T'B,6C
= (9p0utn — T2 VyEn — Dhyduds — IR, pks)
+ (MRS, Ec — (95T, )&8) (2.17)

The expression in the first brackets of the above equation is clearly symmetric and
will therefore not contribute to (2.16). We thus find that

(Va Vs = VeVadia = (TR s — TRoe + TaalCs — TReTC) 8 = F B aupéa
(2.18)
or
FProp =T hyp — Tiaga + TG — sl o (2.19)

F B/.\alg is called thecurvature spinor
The relationship between the Riemannian curvature tensor and the curv-
ature spinor can be found as follows: recall that by definiti®f,.z&, =
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(Vg Vo — Vo V)&, Multiplying both sides of this equation lay, 5 we find,
oRe (Va Vs = Vs Vo) = 0ha R vy = 0he 0™ Rupad
= 0Rg08 0" P Rupaky = Ropappat . (2.20)

Since we are strictly dealing with Riemannian spinor connections, condition (4)
of Section 2b follows identically. The left-hand side of (2.20) is thus just

(Vo Vg — VgV )énp = F/.'t/la,gém B + EB'V)(;[;SAM’
= (epe'Fcage + SCAF_D’B’/Sa)SCD, (2.21)
Comparing (2.20) and (2.21), we find
Rascoos = €B'D Faceg + €ac EB/D/aﬁ- (2.22)

It can, moreover, be shown that the curvature spinor has the following sym-
metry properties:

FaBsg = FBAss:
’ ’ (2.23)
Faesyp = —FaBga-

Multiplying (2.22) by ¢®P" and applying the above symmetry properties, one
obtains

2Facap = Racap = Rascly, (2.24)

By the correspondence between the tensorial curvature and the spinorial curvature,
we find that the spinor curvature satisfies the Bianchi identities

Ve Rugy + VRuya + Vy Ruveg = 0, (2.25)
¢
0= UKE/GEE/(Va Ry + VRuvya + Vy Ruvagp)
= VoRaBsy + VgRagye + V, Rapag, (2.26)
¢
VeFassy + VsFasyo + V), Fagss = 0. (2.27)

The dual of the curvature spinor is defined by
1 1
*Fagh’ = E(—g)‘?s"‘ﬂ"”FABaﬁ. (2.28)

We can thus write the Bianchi identities ®s*Fag”” = 0, which is just Eq. (1b)
of Carmeli’s equations.
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3. CORRESPONDENCE BETWEEN CARMELI'S
AND EINSTEIN’'S EQUATIONS

We are now in a position to discuss Carmeli’s equations in more detail. We first
recall, by Eq. (2.11), thatthe metric tensor can be written in terms ofigend the
o AB . Thisistrue, therefore, for the Christoffel symbols, the spinor connections and
thus, for the curvature spinor and its covariant derivatives. Carmeli’s equations can
thus be considered as a set of partial differential equations of the third order in the
variableso gz and theo A" and their partial derivatives. Assuming, furthermore,
that they are soluble, then we can build the metric and so the entire Riemannian
space. We will now find out what the Riemannian space is so constructed. This
will enable us to find out the correspondence to Einstein’s equations.

Proposition 1. When restricted to Riemannian connections, every solution to
Einstein’s equations

1
R, =58, "R=KkT,.", (3.1)

satisfies Carmeli’'s equations identically for an appropriate choice f*Jin
Eqg. (1a).

Before proving this statement, it will be convenient to prove the following
lemma.

Lemmal.l. Let H;” be atensor defined by

Hup” = UO,AB/O—f?D,(gB/D’JACy + SAC\]_B’D’V) (3.2)
Then
VsFap” = Jag” © VsRyp”’ = Hyp”. (3.3)

Proof: We first notice that
VsFag” = Jag” & VsFae”’ = Jag?, (3.4)
Hence by (2.22)
V,Ragco™ = eap VuFac" + eacV,Fep !’
= egpJdac” +eacleo’. (3.5)

Conversely, if (3.5) holds, then multiplying its both sides 4%°" gives (la).
Consequently,

V,Fag"’ = Jas" < V,Racep’’ = ecpJas” + easdep . (3.6)
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But since we are dealing with Riemannian connections, condition (4) of Section 2b
is satisfied. Therefore

VoRus"" = Hys" © V,Racep™’ = ecoJas” + easden™ (3.7)
sinceR, /" = %AB/%C P’ Ragcp™” andthe transformation is reversible. Thus (3.6)
and (3.7) give (3.3). This proves our lemma

Proof of Proposition 1:  The major significance of the restriction to Riemannian
connections is that Bianchi identities (2.25) and (1b) are satisfied. Multiplying
(2.25) byg“* gives

VuRg"* =V, Rg, — V4R, (3.8)
We can write the Einstein equations (3.1) as
Raﬁ = k(Ta/S - grxﬁT)y (39)

wereT = g"'T,,. Butif Einstein’s equations (3.9) are satisfied, then by (3.8) we
have

Vi Rgyot = K(V, Wp, — VgW,,) (3.10)
where
Wop = Top — Qup T (3.11)
Now let
V. Rup”" = Hyp” (3.12)

whereH,g" is given by Eq. (3.2). Then (3.10) gives
Hop” = 0005 P (empdac” + eacden?) = k(VeWo” — VaWs")  (3.13)
¢
eep dac’ +eacten” = kofgolp (VeWa" — VuWy?)
= k(VeoWag” — VasWep”) (3.14)

12
1 B’D/
Jac” = Eké? (VeoWas” — VagWep?)
1 , ,
= Ek(VCB Wag? + VAB WCB/V). (315)

Let Jag? be givenasin (3.15). IR.s, s is the curvature tensor built from a solution
to Einstein’s equations, then, as shown, (3.10) is satisfied. But if (3.15) is satisfied,
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then (3.13) is satisfied, and if (3.10) and (3.13) are satisfied, then (3.12) is satisfied,
so that by Lemma 1.1, Eq. (1a) is satisfied, proving our propositian.

We conclude from Proposition 1 that Carmeli's equations are more general
than Einstein’s equations. It is now desired to check the extent of this generality
when Jag” is given by (3.15). To this end, IeR,4,s correspond to a solution to
Einstein’s equations and Ié{xﬂys correspond to a solution to Carmeli’s equations
with Jag” given by (3.15). Then by Proposition R,, s correspond to a solution
to Carmeli’'s equations, so that by Lemma 1.1 and Eq. (3.2), Bgghs and Raﬂya
satisfy Eq. (3.12). Thus

VsRup"? = VsRyp?® = Hyp”. (3.16)
Let
Aaﬁys Raﬂya - Rafsya (3.17)
Then by Eq. (3.16A.s,s satisfies
Vs A’ = 0. (3.18)

Itis also clear that\z,; has the same symmetry propertiesRas, s and Rys,s.
Moreover, since bothiaﬁ],a and Ryg,s satisfy Bianchi identities then so does
Augys. Thus by Lemma 1.1 and Eq. (3.18)4,s corresponds to a solution to the
homogeneous Carmeli’s equations, namely Eq. (1a), (1b) uigh = O.

Note that sinceAqs,s has the same symmetry properties as the curvature
tensor, and since it satisfies Bianchi’s identities, then (3.18) can be written through
(3.8) as

ViAgy' =V, Ag, — VgA,, =0, (3.19)
where
Aup = Anup” = 9" Aapupo- (3.20)
The contraction of (3.19) through, v gives
2V, A" =0, A (3.21)
and
VALK =3, A, (3.22)
We thus conclude
d0A=0
!

A = const (3.23)
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Now contracting (3.17), we get
Rug = Rus + Aus. (3.24)

So we see that a solution to the Carmeli equations with the corresponding “current
density” is equivalent to a solution to a generalized Einstein equations of the sort

R()tﬂ = k(szﬁ - gaﬂT) + Aotﬁ’ (325)

where A4 is the Ricci tensor that corresponds to a solution to the homogeneous
Carmeli equations. Recall that the Einstein field equations in empty space with a
cosmological constant can be writtenRs = dug A, and since, by definition of
Riemannian space, the metric is a constant field with respect to covariant differen-
tiation, we arrive at the conclusion that such a Ricci tensor must satisfy Eq. (3.19).
Furthermore, by Lemma 1.1 we conclude tRag also corresponds to a solution

to the homogeneous Carmeli equations. There exists, therefore, a solution to the
homogeneous Carmeli equations such that the corresponding Ricci #&gsor
satisfiesA,s = gy A. Substituting this in Eq. (3.25), we see that solutions to the
Einstein equations with a cosmological constant are also included in solutions to
Carmeli’s equations.

4. CONCLUDING REMARKS

The Carmeli equations, as we have seen, are more general than Einstein’s
equations. They, moreover, contain all solutions to Einstein’s equations even with
a cosmological constant. It is worthwhile therefore exploring them furthermore.
In particular, as shown in the last section, their homogeneous solutions play an
important role.

It is interesting to note, and may be shown in a sequel paper, that the
Riemannian spinor connections are readily in the fornsg®,C) gauge poten-
tials, with the curvature spinor as the gauge field. The gauge field equations thus
formed will clearly be the Carmeli equations. If, moreover, the connections are
not specified, then the Carmeli equations will be a gengté&?,C) gauge field
equations.
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